7,802 research outputs found

    TeV gravity at neutrino telescopes

    Full text link
    Cosmogenic neutrinos reach the Earth with energies around 10^9 GeV, and their interactions with matter will be measured in upcoming experiments (Auger, IceCube). Models with extra dimensions and the fundamental scale at the TeV could imply signals in these experiments. In particular, the production of microscopic black holes by cosmogenic neutrinos has been extensively studied in the literature. Here we make a complete analysis of gravity-mediated interactions at larger distances, where they can be calculated in the eikonal approximation. In these processes a neutrino of energy E_\nu interacts elastically with a parton inside a nucleon, loses a small fraction y of its energy, and starts a hadronic shower of energy y E_\nu << E_\nu. We analyze the ultraviolet dependence and the relevance of graviton emission in these processes, and show that they are negligible. We also study the energy distribution of cosmogenic events in AMANDA and IceCube and the possibility of multiple-bang events. For any neutrino flux, the observation of an enhanced rate of neutral current events above 100 TeV in neutrino telescopes could be explained by TeV-gravity interactions. The values of the fundamental scale of gravity that IceCube could reach are comparable to those to be explored at the LHC.Comment: 10 pages, 7 figures; new section on air showers added, version to be publishe

    Probing TeV gravity at neutrino telescopes

    Get PDF
    Models with extra dimensions and the fundamental scale at the TeV could imply sign als in large neutrino telescopes due to gravitational scattering of cosmogenic neu trinos in the detection volume. Apart from the production of microscopic black hol es, extensively studied in the literature, we present gravity-mediated interactions at larger distances, that can be calculated in the e ikonal approximation. In these elastic processes the neutrino loses a small fracti on of energy to a hadronic shower and keeps going. The event rate of these events is higher than that of black hole formation and the signal is distinct: no charged leptons and possibly multiple-bang events.Comment: 5 pages; to appear in the proceedings of the Workshop on Exotic Physics with Neutrino Telesocpes, Uppsala 20-22 September 200

    Origin of the high energy neutrino flux at IceCube

    Full text link
    We discuss the spectrum of the different components in the astrophysical neutrino flux reaching the Earth and the possible contribution of each component to the high-energy IceCube data. We show that the diffuse flux from cosmic ray interactions with gas in our galaxy implies just 2 events among the 54 event sample. We argue that the neutrino flux from cosmic ray interactions in the intergalactic (intracluster) space depends critically on the transport parameter ÎŽ\delta describing the energy dependence in the diffusion coefficient of galactic cosmic rays. Our analysis motivates a E^{-2.1} neutrino spectrum with a drop at PeV energies that fits well the data, including the non-observation of the Glashow resonance at 6.3 PeV. We also show that a cosmic ray flux described by an unbroken power law may produce a neutrino flux with interesting spectral features (bumps and breaks) related to changes in the cosmic ray composition.Comment: 19 pages, new section about changes in CR composition, version to appear in Ap

    The social brain meets the reactive genome: neuroscience, epigenetics and the new social biology

    Get PDF
    The rise of molecular epigenetics over the last few years promises to bring the discourse about the sociality and susceptibility to environmental influences of the brain to an entirely new level. Epigenetics deals with molecular mechanisms such as gene expression, which may embed in the organism “memories” of social experiences and environmental exposures. These changes in gene expression may be transmitted across generations without changes in the DNA sequence. Epigenetics is the most advanced example of the new postgenomic and context-dependent view of the gene that is making its way into contemporary biology. In my article I will use the current emergence of epigenetics and its link with neuroscience research as an example of the new, and in a way unprecedented, sociality of contemporary biology. After a review of the most important developments of epigenetic research, and some of its links with neuroscience, in the second part I reflect on the novel challenges that epigenetics presents for the social sciences for a re-conceptualization of the link between the biological and the social in a postgenomic age. Although epigenetics remains a contested, hyped, and often uncritical terrain, I claim that especially when conceptualized in broader non-genecentric frameworks, it has a genuine potential to reformulate the ossified biology/society debate

    Cosmogenic neutrinos and signals of TeV gravity in air showers and neutrino telescopes

    Full text link
    The existence of extra dimensions allows the possibility that the fundamental scale of gravity is at the TeV. If that is the case, gravity could dominate the interactions of ultra-high energy cosmic rays. In particular, the production of microscopic black holes by cosmogenic neutrinos has been estimated in a number of papers. We consider here gravity-mediated interactions at larger distances, where they can be calculated in the eikonal approximation. We show that for the expected flux of cosmogenic neutrinos these elastic processes give a stronger signal than black hole production in neutrino telescopes. Taking the bounds on the higher dimensional Planck mass M_D (D=4+n) from current air shower experiments, for n=2 (6) elastic collisions could produce up to 118 (34) events per year at IceCube. On the other hand, the absence of any signal would imply a bound of M_D>~5 TeV.Comment: 10 pages, 1 figure; version to appear in Phys. Rev. Let

    New Synthetic Endocannabinoid as Anti-Inflammaging Cosmetic Active: an In Vitro Study on a Reconstructed Skin Model

    Get PDF
    Endocannabinoids have been recently appointed as interesting cosmetic actives in regulating inflammaging, a state of chronic low-grade inflammation, known for being involved in many senescence\u2019s manifestations, included skin aging. The aim of this study was to assess the anti-inflammaging activity of a new synthetic endocannabinoid, Isopalmide\uae, on a reconstructed skin model, on which inflammaging has been reproduced through UVA radiation and light mechanical stress. We tested Isopalmide\uae both as a single active and conveyed in a cosmetic product, in comparison with Anandamide, a well-known natural endocannabinoid with anti-inflammatory action. The anti-inflammaging activity of topically applied products has been assessed, after 6 hours of treatment post-irradiation, through the transcriptional modification of genes involved in the NF-\u3baB pathway and the epigenetic pathway targeting miRs as potential biomarkers of inflammaging: miR-21, miR-126 and miR-146a. The results confirmed the anti-inflammatory action of Anandamide which inhibits NF-\u3baB, while Isopalmide\uae showed its anti-inflammaging activity through the establishment of an inflammatory/anti-inflammatory balance by maintaining NF-\u3baB inactive in the cytoplasm and active in the nucleus. The anti-inflammaging activity was shown also by the cosmetic product containing Isopalmide

    New physics from ultrahigh energy cosmic rays

    Get PDF
    Cosmic rays from outer space enter the atmosphere with energies of up to 10^{11} GeV. The initial particle or a secondary hadron inside the shower may then interact with an air nucleon to produce nonstandard particles. In this article we study the production of new physics by high energy cosmic rays, focusing on the long-lived gluino of split-SUSY models and a WIMP working as dark matter. We first deduce the total flux of hadron events at any depth in the atmosphere, showing that secondary hadrons can not be neglected. Then we use these results to find the flux of gluinos and WIMPs that reach the ground after being produced inside air showers. We also evaluate the probability of producing these exotic particles in a single proton shower of ultrahigh energy. Finally we discuss the possible signal in current and projected experiments. While the tiny flux of WIMPs does not seem to have any phenomenological consequences, we show that the gluinos could modify substantially the profile of a small fraction of extensive air showers. In particular, they could produce a distinct signal observable at AUGER in showers of large zenith angle.Comment: 9 pages, version to appear in PR

    Perturbative and non-perturbative renormalization results of the Chromomagnetic Operator on the Lattice

    Full text link
    The Chromomagnetic operator (CMO) mixes with a large number of operators under renormalization. We identify which operators can mix with the CMO, at the quantum level. Even in dimensional regularization (DR), which has the simplest mixing pattern, the CMO mixes with a total of 9 other operators, forming a basis of dimension-five, Lorentz scalar operators with the same flavor content as the CMO. Among them, there are also gauge noninvariant operators; these are BRST invariant and vanish by the equations of motion, as required by renormalization theory. On the other hand using a lattice regularization further operators with d≀5d \leq 5 will mix; choosing the lattice action in a manner as to preserve certain discrete symmetries, a minimul set of 3 additional operators (all with d<5d<5) will appear. In order to compute all relevant mixing coefficients, we calculate the quark-antiquark (2-pt) and the quark-antiquark-gluon (3-pt) Green's functions of the CMO at nonzero quark masses. These calculations were performed in the continuum (dimensional regularization) and on the lattice using the maximally twisted mass fermion action and the Symanzik improved gluon action. In parallel, non-perturbative measurements of the K−πK-\pi matrix element are being performed in simulations with 4 dynamical (Nf=2+1+1N_f = 2+1+1) twisted mass fermions and the Iwasaki improved gluon action.Comment: 7 pages, 1 figure, 3 tables, LATTICE2014 proceeding

    K→πK \to \pi matrix elements of the chromomagnetic operator on the lattice

    Get PDF
    We present the results of the first lattice QCD calculation of the K→πK \to \pi matrix elements of the chromomagnetic operator OCM=g sˉ σΌΜGΌΜdO_{CM} = g\, \bar s\, \sigma_{\mu\nu} G_{\mu\nu} d, which appears in the effective Hamiltonian describing ΔS=1\Delta S = 1 transitions in and beyond the Standard Model. Having dimension 5, the chromomagnetic operator is characterized by a rich pattern of mixing with operators of equal and lower dimensionality. The multiplicative renormalization factor as well as the mixing coefficients with the operators of equal dimension have been computed at one loop in perturbation theory. The power divergent coefficients controlling the mixing with operators of lower dimension have been determined non-perturbatively, by imposing suitable subtraction conditions. The numerical simulations have been carried out using the gauge field configurations produced by the European Twisted Mass Collaboration with Nf=2+1+1N_f = 2+1+1 dynamical quarks at three values of the lattice spacing. Our result for the B-parameter of the chromomagnetic operator at the physical pion and kaon point is BCMOKπ=0.273 (70)B_{CMO}^{K \pi} = 0.273 ~ (70), while in the SU(3) chiral limit we obtain BCMO=0.072 (22)B_{CMO} = 0.072 ~ (22). Our findings are significantly smaller than the model-dependent estimate BCMO∌1−4B_{CMO} \sim 1 - 4, currently used in phenomenological analyses, and improve the uncertainty on this important phenomenological quantity.Comment: 20 pages, 4 figures, 2 table. Refined SU(3) ChPT analysis with no changes in the final result. Version to appear in PR

    The chromomagnetic operator on the lattice

    Full text link
    We study matrix elements of the "chromomagnetic" operator on the lattice. This operator is contained in the strangeness-changing effective Hamiltonian which describes electroweak effects in the Standard Model and beyond. Having dimension 5, the chromomagnetic operator is characterized by a rich pattern of mixing with other operators of equal and lower dimensionality, including also non gauge invariant quantities; it is thus quite a challenge to extract from lattice simulations a clear signal for the hadronic matrix elements of this operator. We compute all relevant mixing coefficients to one loop in lattice perturbation theory; this necessitates calculating both 2-point (quark-antiquark) and 3-point (gluon-quark-antiquark) Green's functions at nonzero quark masses. We use the twisted mass lattice formulation, with Symanzik improved gluon action. For a comprehensive presentation of our results, along with detailed explanations and a more complete list of references, we refer to our forthcoming publication [1].Comment: 7 pages, 1 figure. Talk presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German
    • 

    corecore